na glavno vsebino
ROVI – Innovative radar and optical satellite image time series fusion and processing for monitoring the natural environment
Spletna stran projekta
Status
Aktiven

                            

 

Project team

 

Krištof Oštir, Anka Lisec, Jernej Tekavec, Bujar Fetai, Urška Drešček, Ana Potočnik Buhvald, Matej Račič, Tatjana Veljanovski, Žiga Kokalj, Nejc Čož, Aleš Marsetič, Urška Kanjir, Liza Stančič, Andrej Kobler, Mitja Skudnik, Jernej Jevšenak


Project /program leader Krištof Oštir

Other project/program partner's organization UL FGG (lead partner), Research Centre of the Slovenian Academy of Sciences and Arts, Slovenian Forestry Institute

Project/program code

J2-3055


Source of finance Slovenian Research Agency

 

DESCRIPTION

Earth observation plays an important role in achieving sustainable development by providing spatial information to support policy, planning, and decision making. The serious changes in the natural environment are becoming societal problems hence detailed and uptodate information is essential. The proposed project aims to contribute to this challenge by developing advanced solutions for monitoring and predicting processes in the natural environment. We focus on satellite-based observation of grasslands, wetlands, and forests, because these are valuable habitats as well as some of the most important natural carbon sinks. Accurate and timely information about their condition can improve the management and long term sustainability of these areas.

 

MAIN GOALS

The project will focus on data collected by optical Sentinel-2 satellites and radar Sentinel-1 satellites of the European Copernicus programme.

  • The main research goal is to combine the very different optical and radar time series of satellite data. This fusion can overcome the problem of missing data when only optical images are used (loss of observations due to cloud cover), and thus greatly improve the ability to observe vegetation with satellite data.
  • Identifying vegetation types, as well as observing the development or response of vegetation is significantly more successful and accurate if important phases in the phenological development can be identified in the time series of satellite data. In this light, our next objective is to provide ordered and validated time series of optical and radar data, so-called analysis-ready data, in addition to open-source vegetation mapping tools. To achieve this objective, we will explore multi-sensor satellite data fusion with machine learning approaches, time series analysis for vegetation observation, and knowledge extraction with data mining.
  • The reliability of the results will be ensured by calibration and validation of data and methods with verified reference data (field observations). We will develop tools for key tasks of monitoring the natural environment, such as tools for predicting vegetation species and vegetation growth, and tools for vegetation-specific phenology metrics.

 

PROJECT/PROGRAM WORK PACKAGES

The research part of the project will be carried out in five interlinked thematic work packages (WP1-WP5) and a separate work package is dedicated to project coordination and dissemination (WP6).

  • In WP1 we will prepare a collection of Sentinel-1 and Sentinel-2 satellite data and related products, and organise the data in a PostgreSQL database with other relevant data (e.g., in-situ observations).
  • In WP2 we will analyse and improve machine learning methods for time series generation, analysis, and validation.
  • WP3 is dedicated to data fusion and time series analysis – to achieve this, we will develop a novel radar optical vegetation index (ROVI), and apply advanced machine learning methods for time series analysis defined in WP2.
  • WP4 will improve spatio-temporal models, calibration, and validation of different satellite time series to define new descriptors and workflows for phenology analyses.
  • In WP5, we will use radar optical satellite time series for mapping large heterogeneous natural areas. Mapping accuracy will be evaluated, and reliability will be provided as an important output.

 

SHIFT + A

Naša spletna stran uporablja piškotke, ki se naložijo na vaš računalnik. Ali se za boljše delovanje strani strinjate z njihovo uporabo?

Več o uporabi piškotkov

Uporaba piškotkov na naši spletni strani

Pravna podlaga

Podlaga za obvestilo je spremenjeni Zakon o elektronskih komunikacijah (Uradni list št. 109/2012; v nadaljevanju ZEKom-1), ki je začel veljati v začetku leta 2013. Prinesel je nova pravila glede uporabe piškotkov in podobnih tehnologij za shranjevanje informacij ali dostop do informacij, shranjenih na računalniku ali mobilni napravi uporabnika.

Kaj so piškotki?

Piškotki so majhne datoteke, pomembne za delovanje spletnih strani, največkrat z namenom, da je uporabnikova izkušnja boljša.

Piškotek običajno vsebuje zaporedje črk in številk, ki se naloži na uporabnikov računalnik, ko ta obišče določeno spletno stran. Ob vsakem ponovnem obisku bo spletna stran pridobila podatek o naloženem piškotku in uporabnika prepoznala.

Poleg funkcije izboljšanja uporabniške izkušnje je njihov namen različen. Piškotki se lahko uporabljajo tudi za analizo vedenja ali prepoznavanje uporabnikov. Zato ločimo različne vrste piškotkov.

Vrste piškotkov, ki jih uporabljamo na tej spletni strani

Piškotki, ki jih uporabljamo na tej strani sledijo smernicam:

1. Nujno potrebni piškotki

Tovrstni piškotki omogočajo uporabo nujno potrebnih komponent za pravilno delovanje spletne strani. Brez teh piškotov servisi, ki jih želite uporabljati na tej spletni strani, ne bi delovali pravilno (npr. prijava, nakupni proces, ...).

2. Izkustveni piškotki

Tovrstni piškotki zbirajo podatke, kako se uporabniki vedejo na spletni strani z namenom izboljšanja izkustvene komponente spletne strani (npr. katere dele spletne strani obiskujejo najpogosteje). Ti piškotki ne zbirajo informacij, preko katerih bi lahko identificirali uporabnika.

3. Funkcionalni piškotki

Tovrstni piškotki omogočajo spletni strani, da si zapomni nekatere vaše nastavitve in izbire (npr. uporabniško ime, jezik, regijo) in zagotavlja napredne, personalizirane funkcije. Tovrstni piškotki lahko omogočajo sledenje vašim akcijam na spletni strani.

4. Oglasni ali ciljani piškotki

Tovrstne piškotke najpogosteje uporabljajo oglaševalska in družabna omrežja (tretje strani) z namenom, da vam prikažejo bolj ciljane oglase, omejujejo ponavljanje oglasov ali merijo učinkovitost oglaševalskih akcij. Tovrstni piškotki lahko omogočajo sledenje vašim akcijam na spletu.

Nadzor piškotkov

Za uporabo piškotkov se odločate sami. Piškotke lahko vedno odstranite in s tem odstranite vašo prepoznavnost na spletu. Prav tako večino brskalnikov lahko nastavite tako, da piškotkov ne shranjujejo.

Za informacije o možnostih posameznih brskalnikov predlagamo, da si ogledate nastavitve.

Upravljalec piškotkov

Gozdarski inštitut Slovenije